Markscheme (paper 1B SL)

Question		Answers	Notes	Total
		Section A		1
1	а	 Accept any answer between 6 and 7 (Relative light intensity); 		1
	b	Photosynthetic rate is around 1.6 in the 600ppm group AND Photosynthetic rate is around 2.4 in the 1400ppm group .	Accept answer 0.1 above or 0.1 below answer stated	1
	С	 Light energy is absorbed by chlorophyl and used to split water molecules (OR photolysis); (At high light intensity) Light saturation occurs as all the available chlorophyll molecules are engaged; Other factors like CO₂ concentration or temperature become limiting; 		2
	d	 Increase chlorophyll concentration; Larger leaves to increase the surface area for light absorption; Optimize leaf arrangement (OR orientation) for light capture; 		1

2	а	 Magnification = Image size / actual size; Magnification = 2cm / 10um; Magnification = 20000um / 10um = x2000; Ensure correct units are used. Award one mark for working and one for correct answer. 	2
	b	 Resolution is the ability to distinguish between two separate points as distinct entities; Increasing magnification enlarges the image but does not inherently improve resolution; Resolution is limited by the wavelength of light and the numerical aperture of the microscope lens; If magnification is increased beyond the resolution limit, the image may appear larger but will become blurry; 	2
	O	 An electron microscope provides much higher resolution than light microscope; Use of higher power objective lens; Use of specific stains to enhance the contrast of mitochondrial structures; Use of fluorescent dyes to highlight specific structures within the mitochondrion; 	1
	d	 Kidney cells are metabolically active and require a large amount of ATP for cellular processes (such as active transport); Mitochondria are the site of aerobic respiration and ATP production, so their abundance reflects the cells high energy needs; 	1

3	а	i	The highest activity level is (8 Kj/hour) at 12:00;	Information in parenthesis is not required to earn mark.	1
		ii	 Body temperature at 12:00 is 35 degrees Celsius, whereas it is 25 degrees Celsius at 20:00 AND The body temperature at 12:00 is 10 degrees Celsius higher than at 20:00 		1
	b		 Ectotherms regulate body temperature through behavioral adaptations; For example, basking in the sun to increase temperature OR seeking shade to cool down; 		1
	С		 Endothermic organisms need to maintain a constant internal body temperature; This requires constant supply of energy in the form of food to fuel cellular respiration; Heat is a by-product of cellular respiration; 	2	2

4	а	 Zone A has higher species richness than zone B; Zone A has a higher species evenness compared to zone B; 	2
	b	 Human activities – deforestation, logging, or agricultural expansion could reduce species richness and evenness in one region; Natural disturbances – fires, storms or disease outbreaks could differentially affect regions; Habitat fragmentation – fragmentation due to roads or urban development could impact species distribution; Climate change – temperature or precipitation patterns could affect species differently in each region; 	2
	С	 Higher species richness increases ecosystem resilience and stability by providing more functional roles (OR niches occupied) and redundancy; Example – if one species is lost, others can fill its niche, maintaining ecosystem functions; While important, evenness alone does not guarantee stability if species richness is low; 	2
	d	 National parks; Rewilding; Nature reserves; Reclamation (projects); 	3

